

Methodology of the Farm Carbon Calculator

Lizzy Parker and Jonathan Smith

Last updated: May 2023

Table of Contents

Table of Contents	2
Glossary	3
	3
1. Introduction	4
2. About the Farm Carbon Calculator	4
3. How the Calculator is structured	4
4. Calculator Scope	5
5. Accuracy of results	5
6. References and assumptions	6
Proxy and actual data	7
7. How do we calculate CO2e emissions?	7
7.1. Fuels	7
Fuels and electricity	7
Travel	7
Contractors	8
7.2. Materials	8
7.3. Inventory	9
7.4. Crops	9
7.5. Inputs	10
Fertilisers	11
Sprays	11
7.6. Livestock	12
Livestock	12
Animal feeds	15
Animal bedding	15
7.7. Waste and recycling	16
7.8. Distribution	16
7.9. Sequestration	16
7.10. Processing	18
8. Nitrogen balance tool	20
9. What farm business information do users enter?	20
10. Standards and compliance	21
11. What's new and what's not included	22
12. Independent Reviews	22
13. Development cycle	22
14. Contacting us	23

Glossary

AD	Anaerobic Digestion
BEIS	Department for Business, Energy and Industrial Strategy
CH₄	Methane
CO2	Carbon dioxide
CO ₂ e	Carbon dioxide equivalent
FYM	Farm Yard Manure
GHG	Greenhouse Gas
IPCC	Intergovernmental Panel on Climate Change
N ₂ O	Nitrous oxide
NH ₃	Ammonia
PAS	Publicly Available Standard
SOM	Soil Organic Matter
SOC	Soil Organic Carbon

Document Version

Version	Date	Description
Version 1.0	August 2021	Methodology draft finalised
Version 2.0	May 2023	Methodology draft revised

1. Introduction

The purpose of this document is to share details about the methodology that sits behind our Farm Carbon Calculator, a valuable tool used by thousands of farmers, growers and organisations to inform better decision making.

In a world grappling with the urgent task of rapidly reducing greenhouse gas emissions, we believe transparency in this sector is crucial. By sharing more about how farm-related greenhouse gas emissions are measured, we hope our calculator users and the wider public will have a greater understanding about the priorities and opportunities to make positive change. We also believe transparency will help build a greater trust and engagement with our community, with feedback that will further improve our calculator.

2. About the Farm Carbon Calculator

Started in 2008, the Farm Carbon Calculator is one of the longest running and most popular carbon calculators available in the UK. It is one of the three main carbon calculators for UK farmers and growers which are recommended by the NFU to its members. It enjoys widespread support from its users, both in terms of its comprehensive nature and ease of use.

The Calculator is owned and managed by the **Farm Carbon Toolkit** (FCT), an enterprise that helps farmers and growers to measure, understand and take action to reduce their carbon emissions and increase carbon sequestration. FCT is run by farmers for farmers.

Over the years, the Calculator has attracted interest from other countries as well, showing its potential to positively influence carbon management on farms beyond the UK. From the outset, it has measured carbon sequestration and we remain a strong advocate of the potential for farmers and growers to sequester carbon in soils and biomass.

All users of the Farm Carbon Calculator accept a set of Terms and Conditions which are detailed on our website here: <u>https://farmcarbontoolkit.org.uk/terms</u>.

3. How the Calculator is structured

The Calculator is split into ten sections, each subdivided into various input fields. Users enter data according to the following guidance:

- What is relevant to their business only
- Take a recent point in time and cover everything over the previous 12 months
- Capital items go in the Inventory section (e.g. machinery and buildings) and include everything under 10 years old

4. Calculator Scope

The Calculator has always been designed to be used as a whole farm carbon footprinting tool. However, it can also now be used to produce a footprint on a per product basis (e.g. wheat, milk, potatoes).

The boundary of the footprint is decided by the user and can be one of three options:

- 1. To farm gate only i.e. no transport of produce
- 2. Farm and distribution i.e. including transport to the customer
- 3. Farm and distribution through to final customer i.e. house doorstep

The Calculator covers Scopes 1, 2 and 3 in its calculations:

Scope 1	Also known as direct emissions , these are emissions that are owned or controlled by the company such as tractors, farm machinery, gas for heating and from change of land use. Additional emissions arise from N ₂ O released as a consequence of manure storage and application.
Scope 2	These are associated with emissions resulting from the generation of purchased electricity or gas used on the farm.
Scope 3	Also known as indirect emissions , associated with the production, processing and distribution of inputs into the farming system. For example, fertilisers and the emissions that occurred in the manufacture of machinery, building materials and other farm infrastructure.

Users are encouraged to be as comprehensive as possible with the data they submit for their calculation, as this gives more assurance in terms of the reliability of the results.

All GHG fluxes are reported in the standard tonnes of CO_2e . In the final report, a breakdown of fluxes from carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O) in tonnes of CO_2e is given, as well as a breakdown of fluxes by scope.

5. Accuracy of results

The accuracy of a carbon footprint report is dependent on a number of factors, including:

- Accuracy of emissions factors;
- Whether a factor is based on actual or proxy values;
- Accuracy of both data collection and data input by the user;
- Level of completeness by the user.

At present, we do not offer verification of carbon reports for standard users of the Calculator, as this requires a detailed audit process. As part of our consultancy service, we do support farms and companies with enhanced footprint calculations and verifying the inputs, which provides a level of independent auditing. However we do not currently provide this service to a Third Party verification standard e.g. an ISO standard.

In the full results of carbon reports we provide a confidence level column. This ranges from 1 to 3, where results with 3 are those in which we have the most confidence in results. This scale is created by us through an understanding of the accuracy of the emissions/sequestration factors, as well as the likely limitations of user accuracy. For example for emissions from diesel we score this as a 3, because the emissions factors are accurate and we would expect users to have detailed information on their usage. Conversely, emissions from livestock are scored 1; whilst users will likely have detailed input data, emissions from biological systems are inherently variable which limits the level of certainty in these results.

6. References and assumptions

The majority of the emission and sequestration factors that underpin the Farm Carbon Calculator come from peer-reviewed scientific papers and we are transparent about these sources. A full list of current references and assumptions is provided on our website here: https://farmcarbontoolkit.org.uk/carbon-calculator-resources/

Each time we perform a major update to the calculator (typically annually), we review all references and factors; this comprises over 1000 data entry lines.

For ease of use, our calculator is divided into the following data input categories and in subsequent sections of this document, we cover the methodology and emission factors used in each:

- Fuels
- Materials
- Inventory/capital
- Fertility
- Inputs (agro-chemicals)
- Livestock
- Waste
- Distribution
- Sequestration
- Processing

Proxy and actual data

Some emissions factors are calculated based on actual data (e.g. litres of red diesel used), and some are based on proxy data (e.g. carbon sequestration in hedgerows). This depends on the availability of reference data for a particular item, and how practical it is for the user to provide data. Some items offer a choice between approaches depending on what information the user has access to – e.g. distribution of produce by lorry.

Users will not have access to the equipment to directly measure GHG fluxes on their farms and so even where a user chooses the "actual" option to input data, the report for a farm or product is still an indirect assessment of its carbon footprint.

Users can, however, input direct measurements of soil organic matter (SOM) or soil organic carbon (SOC) which can be used as direct measures of GHG fluxes from soils. Indirect estimations of sequestration and land use- related emissions can also be selected in the Calculator where SOM and SOC sampling is not available.

7. How do we calculate CO2e emissions?

7.1. Fuels

Emissions from the use of fuels, electricity, travelling and contractors. These include scope 1 (direct) and scope 3 (indirect – such as processing and transport) emissions, including 'well-to-tank' emissions factors.

Fuels and electricity

All of the items in liquid fuels, electricity, gas fuels and solid fuels are derived from BEIS GHG conversion factors (64). The exceptions are:

Section	Item	Reference	Notes
Liquid fuels	AdBlue	69	
Deliveries	Known carbon footprint	N/A	To enable users to input a known carbon footprint of an input, such as a delivery. Simply direct input of a CO ₂ e figure.

Travel

All data is from BEIS GHG conversion factors (64) and includes all scope 3 emissions, including 'well-to-tank' emissions factors. The 'miles per gallon' function for cars is calculated as a function of miles per gallon, fuel used and miles travelled.

Contractors

Data draws from the <u>HGCA Calculator</u> (37), multiplied by the diesel emissions factor (scopes 1&3) from BEIS GHG conversion factors (64) for all contractor operations with the additional calculations made for the following:

Section	Item	Reference	Notes
Hay baling	Small rectangular		Assumes 250 bales/ha
	Large round		Assumes 15 bales/ha
	Heston		Assumes 7.5 bales/ha

7.2. Materials

The embodied energy in a range of materials that may be used on farms, including aggregates, metals, wood and plastics. These are all Scope 3 emissions.

Emissions factors are drawn from the Inventory of Carbon and Energy database, either version 2.0 (2a) or version 3.0 (2). A range of metrics are used, including tonnes, kg, m^2 and m^3 . The exceptions to this source are:

Section	Item	Reference	Notes
Stone	Slate & Granite	24	Embodied energy in processing stone
Fencing	Complete fencing options	2	Calculating the posts and wire used in common fencing options, multiplied by emissions factors from the Inventory of Carbon and Energy.
Computers	Laptops & Desktops	15	Proxy emissions factors for embodied energy in computers
Water	Mains water & sewage	64	Scope 3 emissions for water supply and disposal
Water	Non-mains	N/A	Figure simply recorded as water use. No emissions specifically – any fuel or electricity used in pumping or treatment will be picked up under Fuels.

7.3. Inventory

This section covers the embodied energy in larger items like machinery and buildings (capital items). In a similar principle to financial accounting, these are depreciated over 10 years, so 10% of emissions are apportioned each year.

Most of the emissions factors are again derived from the Inventory of Carbon and Energy, either version 2.0 (2a) or <u>version 3.0</u> (2), but given only 10% weighting per year. It is also possible to create "custom" projects and group together any items from the "Materials" section to be treated as capital items. The other data sources are:

Section	Item	Reference	Notes
Vehicles	Cars	15	Proxy for relative carbon cost of the vehicle. Note: data on this is particularly difficult to obtain.
Farm machinery	Tractor, harvesters, etc	3	Based on horsepower of machine – a proxy for emissions
Agricultural buildings		2 & 2a	This calculation is based on a standard agricultural portal building constructed of concrete floor, steel frame, roof sheets and timber slat walls. Based on a per m2 calculation.

7.4. Crops

This section covers the carbon dioxide and nitrous oxide emissions from fertility and biomass inputs to cropping systems (fertilisers, organic manures, mineral fertilisers).

Emissions from crops are specifically worked out from the amount of crop (fresh yield) that results in crop residues. Crop residues contribute nitrogenous material to the soil, some of which goes through denitrification to N_2O . The fresh yield quantity is directly proportional to the residues, and then the amount of N_2O released.

The methodology used is that of the IPCC 2019 (52), using emissions factors specific to the UK from the UK GHG Inventory and its annexes (65 & 66) with reference to the GHG protocol agricultural guidance (61).

Section	Item	Reference	Notes
Crops	Agricultural	66	IPCC methodology, and factors from UK GHG Inventory

	Soya & Lupins	20	IPCC methodology but some specific factors provided by Soya UK
	Horticultural	66	IPCC methodology, and factors from UK GHG Inventory
Organic fertility sources	Compost	39	Fresh weight of bought-in compost. Includes both $N_2 O$ and CH_4 emissions.
	Manure (composted)	8	An average of annual measured emissions, including both $\rm N_2O$ and $\rm CH_4$
	Manure – exported	8	A carbon offset/transfer when manure is sold to another farm (which then becomes a carbon emission to them). Same value as composted manure.
Anaerobic digestion	Digestate	38	Bought in digestate – average emissions calculated from AD plants
	Running an AD plant	38	Average emissions of various processes in running an AD plant, including CO ₂ and CH ₄ emissions. Based on tonnes of biowaste input.
Lime & Mineral fertilisers	Lime, rock phosphate, rock potash, K fertiliser, Gypsum	3	Emissions from processing of lime and mineral fertilisers
	Phosphoric acid	73	Emissions associated with production of the
	Potassium sulfate	57	amendment
	Sulfuric acid	74	
Green manures	All leguminous green manures	6	N2O emissions as part of the N fixation process. IPCC methodology, and UK specific N fixation rates. Note that this does not take account of any carbon sequestration – this is covered under soils in sequestration page
Plant raising media	(all)	16	Average of emissions for all common plant raising media used in horticulture

7.5. Inputs

The GHG emissions associated with energy input in the production of agro chemicals and, in the case of fertilisers, the N_2O emissions resulting from their application to UK soils.

Fertilisers

This is split into two sections: one is for generic fertilisers, such as Ammonium Nitrate, or Urea; these are derived from Brentrup *et al.* 2016 (14). These fertilisers require the user to specify the country of origin which should be provided on the invoice or labelling (and has a big effect on the carbon footprint of the product).

The second section is for known fertilisers, including those manufactured by Yara, CF, Origin and Mole Valley Farmers. These are derived from either communication of the recipe and production methods directly from the manufacturer and then calculation using the generic fertiliser values (CF and Mole Avon) or based on verified and certified carbon footprints of those products (41, 75, 76, 77, 78).

The user input figures are based on tonnes of product used.

Two further functions enable users to enter:

- 1. A specific blend of fertiliser, based on known % of N:P:K, multiplied by tonnes of product used
- 2. A specific known footprint of a fertiliser, using kg of CO₂e per kg of product, multiplied by tonnes of product used

Overall GHG emissions for fertilisers are based on four processes, and measured in tonnes CO₂e:

- Production emissions to factory/plant gate
- Direct N₂O emissions to soil
- Indirect NH₃ losses
- Emissions from urea hydrolysis (applies to Urea products only)

All calculations are based on IPCC methodology. The emissions factors for in field emissions are based on <u>MIN-NO project</u> findings (47), which are UK specific, and considered an improvement on IPCC methodology because they are more accurate.

Application is assumed to be by broadcast or application of solution. Nitrogen inhibitors are not accounted for.

Sprays

Sprays can be entered as either "generic" or "actual" dependent on whether the product in question is listed in our database. Both rely on the same underlying emissions factors for fungicides, growth regulators, herbicides, insecticides or molluscicides (40) multiplied by the concentration of active ingredient used. For "actual" sprays, we have a database of over 300 specific branded sprays and their active ingredient content taken from the <u>UK pesticides register</u>.

7.6. Livestock

This section covers nitrous oxide and methane emissions from animals' enteric fermentation and manures, and emissions from imported feeds and bedding.

Livestock

Livestock emissions are complex and are based on IPCC calculation methodologies. There are several variables which require user input:

- Category of livestock, by species, age, use and live weight
- Numbers of livestock, on average, per year both for the current year and the previous year
- Manure handling the percentage (on an annual basis) of manures handled as slurry, FYM, daily spread, or in-field.
- Adjustments for dairy cattle (based on annual milk yield) and beef cattle (based on average liveweight).

A full list of livestock categories used in the Calculator is available below:

Category		Category description
	Dairy cows	Lactating, "dry" or in-calf dairy cows
	Dairy heifers	First pregnancy or first lactation dairy cattle under 3 years of age
Dairy cattle	Dairy replacements (1+ years)	1-3 year old female cattle to join the dairy herd who are not in-calf or lactating
2 , C	Calves (under 1 year)	Cattle under 1 year old
	Dairy beef (1+ years)	Dairy breeds not lactating but fattened for beef (over 1 year old)
	Bulls for breeding	Dairy or beef breeding bulls
Destautile	Calves (under 1 year)	Cattle under 1 year old (male or female)
Beef cattle	Beef cattle	12-18 months cattle for finishing (male or female)
	Beef finishing heifers	18-30 months heifers for slaughter
	Beef suckler cows	Lactating, "dry" or in-calf beef suckler cows

Category		Category description
Beef cattle	Bulls for breeding	Dairy or beef breeding bulls
(continued)	Finishing bulls (beef)	Bull for beef 12+ months (e.g. cereal-fed)
	Beef replacement heifers	First pregnancy or first lactation beef suckler cows under 3 years of age
	Beef finishing steers	12-24 months steers for slaughter
	Adult sows	Sows (including sows in pig, sows being suckled and dry sows being kept for further breeding)
	Breeding gilts (female)	Gilts (including gilts in pig and gilts not yet in pig)
	Adult boars	Boars for service
	Piglets	Fattening swine under 20 kg
Pigs	Weaner pigs (under 20kg)	Fattening swine under 20 kg
	Weaner pigs (over 20kg)	Fattening swine 20-80 kg
	Finishing pig (porker)	Fattening swine 20-80 kg
	Finishing pig (cutter)	Fattening swine 80+ kg
	Bacon pigs	Fattening swine 80+ kg
	Barren sows for finishing	Barren sows for fattening >80kg
	Ewes	Adult ewes
	Replacement ewes	Shearling or replacement ewes (1+ years)
Sheep	Rams or tups	Adult rams or tups
	Lambs	Young sheep under 1 year
Other livestock	Goats	
Other livestock	Horses	
	Deer (all)	

Category		Category description
Other livestock	Chickens – layers	
(continued)	Chickens – broilers	
	Breeding stock (all poultry)	
	Pullets	
	Ducks	
	Turkeys	
	Geese	

Please see notes in the <u>data collection spreadsheet</u> for guidance on completing this section of the Calculator (including how to estimate average head of animals in each category over the 12 month reporting period). Emissions factors that the calculations are based on are determined by UK GHG inventory and its annexes (65 & 66) and IPCC methodology 2019 (52). Since the sex and age of the animal affects their metabolism, and therefore their enteric methane (CH4) emissions and excretion rate, livestock are separated by these characteristics in order to improve the estimates of GHG emissions, which are inherently variable. Lactation and pregnancy also alter an animal's GHG emissions so livestock are also separated based on this trait.

Within the Calculator, it is possible to simply enter the average head of livestock in each applicable category for the most basic estimation of GHG emissions. In this case, where no liveweight is entered, a default liveweight is used (for categories of growing livestock, e.g. calves, this is a midpoint weight within the age-range, to take account of growth across the 12 month reporting period). These default values can be found in our <u>data collection spreadsheet</u>.

For a more comprehensive estimation of GHG emissions, we recommended creating multiple entries for each category with user-input liveweights - this will give a more accurate estimate of GHG emissions. Furthermore, by inputting information on dry matter intake (DMI) per head per year, users can improve the accuracy of GHG emissions estimation.

A Tier 2 (UK-specific) methodology is employed to calculate livestock GHG emissions for cattle, sheep, and pigs. Poultry calculations undergo a Tier 2 calculation but with a zero value for enteric emissions while goats, horses and deer are treated with a Tier 1 (international) methodology.

In this way, the Calculator's Livestock section is customisable for a range of livestock production systems, whilst relying on the generic livestock categories underpinned by the IPCC and UK GHG Inventory guidance.

Animal feeds

These indirect emissions are very important to assess the holistic carbon impacts of livestock production. The list is split into organic and non-organic feeds, as well as a list of generic and branded feed blends.

The Calculator primarily uses data from the <u>'GFLI database</u>' (18). Some further data for non-organic feed is obtained from <u>'GHG emissions from food</u>' (17), along with all the data for organic feeds.

Some emissions factors for feed blends have been calculated, based on the known constituents of certain blends. This research has been undertaken by Farm Carbon Calculator, based on discussions with feed companies. Using the constituent parts, and data from the GFLI database, the footprint of certain blends has been calculated.

The exceptions to these approaches are as follows:

Section	Item	Reference	Notes
Calf rearing	Whole milk powder	68	
	Milk replacement powders (all)	18, 67 & 68	Formulations of milk replacement powders taken from 67 and relevant emissions factors applied to constituent parts based on information in 18 and 68
	Calf rearing pellets	18 & 67	Formulations of milk replacement powders taken from 67 and relevant emissions factors applied to constituent parts based on information in 18.
Supplements	Novapro	72	Estimate of emissions associated with constituents of Novapro (factor to be reviewed upon acceptance of product into GFLI database)

Emissions factors are based on users entering tonnes of product used on an annual basis.

Animal bedding

Animal bedding materials emissions factors are taken from the Inventory of Carbon and Energy (ICE) database v3.0 (2a) with users entering tonnes of product for an annual reporting period.

7.7. Waste and recycling

This section covers emissions from landfill, and the savings from recycling and composting materials. Users enter data on their annual outputs of waste and recycling from a range of specific categories of materials.

Emissions factors for all Landfill emissions, as well as composting and AD emissions are derived from BEIS GHG conversion factors (1). This source does have emissions factors for recycling as well, but they are very generic and lack specific information; for this reason we have used other sources for recycling.

All recycling emissions and offset figures are derived from (33), which contains a detailed list of emissions factors for a range of goods. This includes effective carbon offsets through energy savings made on using virgin materials for new products post recycling.

Emissions associated with Waste-to-energy plants for combustion of municipal waste are derived in reference to (43).

7.8. Distribution

For businesses that have distribution beyond the farm gate within the scope of their report, this section calculates the emissions from distributing and refrigerating food products.

Users can enter actual data on fuel used per year on distribution. If they don't have this data they can use proxy data based on three variables – delivery distance per journey, weight carried per journey, and number of journeys per year.

All the emissions factors are derived from BEIS GHG conversion factors (64). Average values are used, and for road haulage this is based on 50% laden lorries (on a round trip).

Users are encouraged to carefully map and describe the scope of the study, and at what point the responsibility for food transport is passed on to the next actor in the supply chain. This will be different for every business, and may range from farm gate all the way through to the customer's house.

Refrigeration emissions are calculated from refrigerant losses from food storage on the farm (or in packhouses/warehouses/food processing). This is calculated by using the GHG protocol worksheet (12), an online tool to calculate the accurate emissions from refrigerant gases, per year. The figure from the spreadsheet can then be entered directly into the Calculator by the user.

Users are reminded not to double count any data entered in the Fuels section in Distribution (and vice versa).

7.9. Sequestration

This section calculates carbon sequestered by perennial plants and soils on the farm.

Data sources: All of the sequestration factors are proxy figures, except for actual Soil Organic Matter (SOM) measurements. A range of sources are used in this section:

Section	Item	Reference	Notes	
Soils	Soil Organic Matter	79	Based on actual SOM and/ or SOC from soil samples, users enter data on field size, depth of measurement, bulk density	
	Soil Organic Carbon		and SOM/SOC results over a given time period. This is converted into changes in volume of soil organic carbon and therefore the amount of carbon sequestered (or emitted) as per IPCC methodology.	
	Carbon stocks		A log of baseline soil carbon stocks in fields. These results do not impact on the overall carbon balance, they are therefore just for reference.	
Peat soils	Cultivated peat soils	21	N ₂ O emissions from cultivated peat soils. Also CO ₂ losses from soils – unless users are able to supply SOM results, in which case only the N ₂ O changes are accounted for. Average values are used from the source.	
Woodland	Detailed analysis	10	Users input the species, age range and area of woodland. Assumptions of average yield class, average spacing, and no thinning is applied. This is the recommended approach.	
	Mixed, coniferous and broadleaf	10	Average values per hectare of types of woodland, over a 200 year average.	
	In field trees	10	A per m2 value based on average sequestration rates for deciduous woodland.	
Hedgerows	Managed	22	Based on the length and width of managed hedges – i.e. those cut on a regular basis. Sequestration factors based on averages from five peer reviewed studies.	
	Large growth with trees	22	Based on the length and width of large growth hedges with trees – i.e. those trimmed or laid on an irregular basis, forming large structures with in line trees. Sequestration factors based on averages from five peer reviewed studies.	
Perennial crops	Top fruit, stone fruit and nuts	26	Average sequestration values per hectare. Includes biomass only – soil and grass sequestration excluded.	
	Grape vines	27 & 28	Average of two studies. Covers sequestration in biomass only, not soils.	
	Miscanthus	29	Sequestration rates in biomass and soils	

Willow Poplar	30 & 31	Average of two studies, covering sequestration in both soils and biomass
Poplar		
	30 & 32	Average of two studies, covering sequestration in both soils and biomass
Uncultivated	25	Area of field margins that are permanently uncultivated. Sequestration rates include soil carbon.
Permanent	13	Area of permanent peaty wetland that is ungrazed
(various)	23	Changes which result in losses of carbon, such as woodland to arable. This is from carbon losses in soils and biomass. These are considered to be uncommon in a UK setting, but must be accounted for if they occur. These are one off losses. Users should not enter values in here if they have also calculated SOM measurements for exactly these areas of land use change - though this is thought to be an unlikely occurrence.
(various)	44	Sequestration in biomass and soils on a continuous basis for various habitats, as defined in the Countryside Stewardship Scheme. Users should not enter data here if they have included SOM measurements of the same area.
(various)	70	Emissions from varying states of uncultivated peatland in line with the Peatland Carbon Code.
(various)	44	Sequestration in biomass and soils on a continuous basis for various habitats, as defined in the Countryside Stewardship Scheme for higher level scheme (HLS) options. The underlying data is based on mid-tier options, and only HLS schemes with an equivalent mid-tier option in the study are included. Users should not enter data here if they have included SOM measurements of the same area.
	Uncultivated Permanent (various) (various) (various)	Uncultivated25Permanent13(various)23(various)44(various)70

7.10. Processing

This section calculates carbon emitted from food and drink processing, including manufactured inputs commonly used.

Data sources: All of the emission factors are proxy figures, but are all allied to quantities of inputs, not estimates of items used in a process.

Section	Item	Reference	Notes
Sugar	Cane	17	Proxy figures for cane sugar production
	Beet	17	Proxy figures for beet sugar production
Fermentation	CO2 release	34	Direct CO2 released from the fermentation process
Processing	Calcium carbonate	3	Proxy figures for processing input
products	Yeast (dry)	35	Proxy figures for processing input
	Citric acid	36	Proxy figures for processing input
	CO2 canisters		Proxy figures for processing input
	Ammonium Bisulphate	80	Proxy figures for processing input
	Citric acid	80	Proxy figures for processing input
	Crème de Tartre Naturel	80	Proxy figures for processing input
	Diatomite Celatom Earth - FW14	80	Proxy figures for processing input
	Granulated Sugar		Proxy figures for processing input
	Inobacter	80	Proxy figures for processing input
	IOC Primrouge R9008	80	Proxy figures for processing input
	IOC 18-2007	80	Proxy figures for processing input
	Nutriflore FML	80	Proxy figures for processing input
	Oenocell	80	Proxy figures for processing input
	Phosphates Mazure	80	Proxy figures for processing input
	Potassium Bisufite	80	Proxy figures for processing input
Packaging	Wine bottles	15	Emissions factor per bottle for 750cl glass wine bottle
	Recycled glass bottle	71	Emissions factor for Encirc recycled "green glass wine bottle" 750cl
	Labels	2a	Proxy figures for packaging input
	Corks	2a	Proxy figures for packaging input
	Muzzles	2	Proxy figures for packaging input
	Screw caps	2	Proxy figures for packaging input
	Foils – aluminium	2	Proxy figures for packaging input
	Foils – polythene	2a	Proxy figures for packaging input

	Crown caps – steel	2	Proxy figures for packaging input
	Boxes	2a	Proxy figures for packaging input
Refrigeration	Refrigerant usage	12	Refrigerant use and losses
Water	Mains water	1	Use of mains water
	Mains waste water	1	All waste water released to a mains treatment system

8. Nitrogen balance tool

Our nitrogen balance tool uses data input during the process of entering data throughout the Calculator, attributes estimates of nitrogen input and nitrogen or nitrous oxide (N_2O) output and gives a summary of the balance of N in versus N out on the results page.

The categories in the Calculator which feed into the N balance tool are:

Category in Calculator	N in	N out (as N and/ or N₂O)
Inputs > Fertiliser	Fertilisers containing N	Fertiliser emissions
Crops > Organic fertility sources	Bought-in organic manures or AD digestate	Emissions from bought-in fertility sources applied
Crops > Agricultural crops Crops > Horticultural vegetable crops	Seed	Crops sold and Crop residue emissions
Livestock > Animal feed	Animal feeds	
Livestock > Livestock	Animals purchased	Animals sold Milk sold Livestock manure emissions

9. What farm business information do users enter?

At the start of all carbon reports users are asked to input information about their farm business (or specific carbon report). This includes the following information:

- Business category (multiple can be ticked) Arable, Beef, Dairy, Fruit, Lowland grazing, Mixed (arable/livestock), Other, Pigs, Poultry - layers, Poultry - meat, Sheep, Upland grazing, Vegetables, Vineyards, Processing, Wineries, Non-agricultural business
- 2. Soil type Sandy/Light, Sandy Loan, Sandy Clay Loam, Sandy Silt Loam, Loam, Medium Loam, Clay Loam, Clay, Heavy Clay, Silt, Silty Clay Loam, Peat, Chalk
- 3. Farm area in hectares for each of the following:
 - Cultivated land all arable and horticulture land that involves soil cultivations (or non/min-till systems);
 - Grassland temporary and/or permanent grassland, generally used for livestock grazing, and/or forage;
 - Non-cropping land any land not falling under cultivated land or grassland. For example woodland, scrub or other uses which are not generally used for agricultural or horticultural use.
- 4. Annual sales of produce amount of total produce sold for business category(s) selected. For example 50 tonnes of wheat, 50,000 litres of milk, 30 tonnes of potatoes
- Carbon price an optional category for including the price a user is paid for any carbon traded, in £ per tonne of carbon. This will likely become more important in the future.
- 6. Scope of study whether the report covers up to the farm gate only, also Distribution, or right up to the Point of Sale. It is important that reports make clear where the boundaries of reporting lie, especially for comparisons against other businesses.
- 7. **Overheads report** users can create Overheads inventories for their business, which is used specifically when creating reports on a per product basis (e.g. wheat, milk., cauliflower) or where multiple enterprises share equipment or resources. User guidance is given on how to create Overheads and Produce basis reports.

10. Standards and compliance

We believe there is not currently a satisfactory national or international standard that covers the exact requirements of a farm carbon report. <u>PAS 2050</u> is widely used to calculate the GHG emissions from various products and services. Its methodology is used in the Calculator, however its scope falls short of what is required for a complete farm carbon footprint, in that it doesn't include Scope 3 (indirect) emissions, and is very limited on carbon sequestration.

We are actively considering alignment with international standards such as ISO 14064 and the GHG Protocol, as well as land-sector based guidance from FLAG.

11. What's new and what's not included

New developments for each cycle are listed here to enable users to see what's changed.

There are often good reasons why certain items are not included, and they usually relate to the lack of available peer reviewed data.

12. Independent Reviews

We believe it's important for any Carbon Calculator to be independently scrutinised. We aim to undertake this on an annual basis or whenever a major update is implemented. Our last review was completed in November 2020 by Dr Russell Layberry of <u>Pilio Group</u>, a company of carbon footprinting experts affiliated to the University of Oxford. The review checked:

- The accuracy of emissions factors
- Quality of references used
- Overall approach and scoping of the Calculator
- Algorithms and assumptions in the calculations

Following a detailed 30 page report and three rounds of discussions regarding corrections and potential improvements, Dr Layberry gave the following assessment:

"The Farm Carbon Calculator is an excellent and comprehensive tool for calculating the scope 1,2 and 3 emissions from farm processes. It includes direct energy use, carbon emissions from farm inputs such as fertiliser and sprays, carbon from the production of equipment and buildings, emissions from livestock and sequestration through above and below ground carbon and land use change. Crucially the tool includes the ability to accurately measure carbon sequestration services on farms.

The tool, apart from being accurate, up to date and comprehensive, is the best tool by far this reviewer has seen for calculating the environmental impact of farming – part of Dr Layberry's recent work was a comparative analysis of software tools and standards which calculate carbon and biodiversity impacts of farming. Our company is already recommending its use for our current clients who have agricultural emissions which need capturing for their voluntary scope 3 reporting."

13. Development cycle

Our development cycle is summarised in the figure below. At a minimum, the Calculator is updated annually. Research into new data, methodologies, and new user functions does continue throughout the year and minor adjustments may be made to the calculator.

As we develop the calculator, we believe it's critical to listen to the views, requests and questions of our users, ensuring we are as relevant, up to date and user friendly as possible. A structured engagement

process with users and working groups on particular topics, helps to strengthen the knowledge, feedback, rigour and testing for the Calculator.

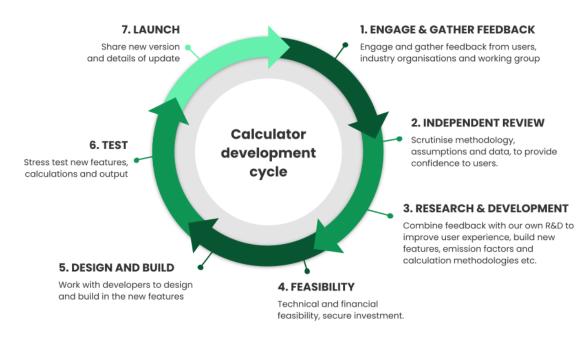


Figure: Our annual calculator development cycle

14. Contacting us

We welcome Calculator users to contact the Calculator team with questions, suggestions and comments at any time. For general enquiries, please email: <u>calculator@farmcarbontoolkit.org.uk</u> or you can contact specific members of staff:

Calculator Director: Jonathan Smith

jonathan.smith@farmcarbontoolkit.org.uk

Calculator Manager: Lizzy Parker lizzy.parker@farmcarbontoolkit.org.uk