Category: Insights

Bringing new and novel fertilisers into Calculators: a call for further collaboration 

This month marks a year since the publication of the ‘Harmonisation of Carbon Accounting Tools for Agriculture’ report commissioned by Defra and produced by ADAS. 

The collaborative efforts of the three leading carbon calculators resulted in significant progress being made, especially in the area of harmonisation on methods to bring new and novel fertilisers into our Calculators.

An opportunity for harmonisation

Commissioned by Defra in 2022, the independent ADAS report sought to explore the level of divergence in carbon assessments between carbon calculators and provide recommendations for harmonisation, with the ultimate goal of ensuring comparability of results between the different providers. As the report states:

It is not about identification of which calculator is better or worse than others. It is intended that the insights from this analysis will help inform a potential approach that will enable providers to develop their calculators in a way that creates increased comparability of results while still allowing innovation.

Successful collaboration

In response to the publication of the report, three of the UK’s major carbon calculators – Agrecalc, Cool Farm Tool, and the Farm Carbon Calculator – agreed to work together in June 2024 to harmonise their calculator methodologies, on the understanding that such work would ultimately benefit all their end users. 

Since that initial meeting, we are pleased to report significant progress on one area of divergence identified by ADAS between the different calculators reviewed, namely fertiliser embedded emissions.  In addition, we are working on Calculator interoperability to enable data transfer between Calculators.

We have recently established an Industry Fertiliser Steering Group to explore how new and novel fertilisers with lower carbon footprints should be incorporated into all carbon calculators. This work is being kindly supported by the Agriculture Industries Confederation (AIC). With a range of new and novel fertilisers being developed and introduced into the UK, it is important that any emissions reductions brought about by these products can be accurately accounted for by the calculator tools. 

Join us

Following the successful collaboration between Agrecalc, Cool Farm Tool, and the Farm Carbon Calculator, we are keen to invite other calculator providers who also publicly provide transparency in their calculator methodologies to join us on this harmonisation activity.  Liz Bowles, CEO of Farm Carbon Toolkit said:

We are keen to support all Calculators who wish to work together for the benefit of the agricultural sector.

Our mutual goal is collaboration with industry, trade bodies, and fellow calculator providers in the UK and internationally, so that we can actively contribute to the development of more consistent approaches to on-farm carbon calculation, for the ultimate benefit of our varied customers. We look forward to hearing from you.

Additional Information

This positive, collaborative work has come about as a direct result of the ADAS report commissioned by Defra. Further information on the report is set out below, together with some key aspects to assist everyone in the agri-food sector to understand more about how farm-based greenhouse gas emissions are estimated.

The purpose of the ADAS work

This project was developed to quantify the level of divergence in the calculation of farm-level emissions between a selection of the main carbon calculators on the market, understand the causes of this divergence, and determine how those differences might impact the user. By its nature, the report focuses on the differences between calculators and the challenges of providing robust estimations while making the process accessible to non-expert users. 

However, as the report states:

It is important to recognise that despite these challenges the calculators are all able to provide the farmer with a baseline understanding of emissions and can facilitate the start, and ongoing development, of a decarbonisation process.

Fundamentals of all Farm Carbon Calculators

As the report states:

all carbon calculators are models; there is no single correct answer as they are aiming to simplify a complex biological system

However, it is important to understand why there are differences in results between calculators and identify ways to minimise these differences. 

Harmonisation of calculators aims to ensure greater levels of precision of outputs, while recognising the need to simplify data entry to support the use by non-expert users (e.g., farmers), in order to facilitate the provision of consistent guidance to farmers to support their decarbonisation efforts.

Findings of the work

The report did not recommend any one calculator as being superior to the other calculators investigated. Indeed, what has become clear is that different calculators ask different questions and there is currently no one standard question. 

It is important for farmers and growers to look at how individual calculators work for them in providing results at a product, enterprise or whole farm level and seek one which meets their specific needs. The report set out the main areas where ADAS found differences between how the calculators dealt with different types of emissions and how the boundaries for such measurements were set.

Conclusions

It is clear that there is still much work to be done by all calculators to ensure they remain aligned with emerging guidance as this science develops and matures. The good news is that data standards harmonisation is underway, driven by the tool owners themselves. 

While there continues to be a range of different user and supply chain requirements for a farm carbon footprint (from corporate scope 3 reporting and risk management planning to product footprinting and on-farm resilience planning) there will be an ecosystem of different tools and providers to meet this range of needs. One size does not fit all in this space!

To identify which Calculator might suit you best, AHDB has set out a useful set of questions to guide you: Carbon footprint calculators – what to ask to help you choose | AHDB

Notes to Editors

As the UK agricultural supply industry’s leading trade association, the Agricultural Industries Confederation (AIC) represents businesses in key sectors within the supply chains that feed the nation.

Its Member businesses supply UK farmers and growers with animal feed, fertiliser, seed, crop protection products, trusted advice and quality services that are essential to producing food, as well as trading crops and commodities across the globe.

Formed in October 2003 by a merger of three trade associations, today AIC has over 230 Members in the agri-supply trade and represents £17.8 billion* turnover at farmgate.

AIC works on behalf of its Members by lobbying policymakers and stakeholders, delivering information, providing trade assurance schemes, and offering technical support.

www.agindustries.org.uk

*According to a 2023 survey of AIC Members.

Farm Carbon Toolkit is an independent, farmer-led Community Interest Company, supporting farmers to measure, understand and act on their greenhouse gas emissions while improving their business resilience for the future.

The Farm Carbon Calculator uses the IPCC 2019 and UK GHG Inventory methodologies and is aligned with the GHG protocol agricultural guidance.  Recent developments have allowed us to provide greater interoperability with other data platforms through our Report Export API and Carbon Calculation Engine API. This represents a step-change in the industry’s ability to provide trustworthy carbon footprints with transparent methodologies on platforms where farmers already collect data, thus reducing the data inputting onus on farmers. This new functionality has been warmly welcomed by supply chain businesses who are now using our Calculation Engine to support their customers without the need for further data entry.

The Farm Carbon Calculator is used across the UK and on four continents with global usage growing at around 20% per year.

For over a decade, Farm Carbon Toolkit has delivered a range of practical projects, tools and services that have inspired real action on the ground. Organisations they work with include the Duchy of Cornwall, First Milk, Tesco, Yeo Valley and WWF. The Farm Carbon Calculator is a leading on-farm carbon audit tool, used by over 8,000 farmers in the UK and beyond. To find out more visit www.farmcarbontoolkit.org.uk  

Media contact: Rachel Hucker ([email protected] 07541 453413)

Agrecalc, a carbon footprint tool developed by combining practical expertise with world-class agricultural science, is a precise instrument that offers both breadth and depth of on-farm and through-the-supply-chain calculations of GHG gas emissions.

Agrecalc is the largest source of collated farm benchmark data from thousands of farms, having been used as the designated tool to deliver carbon audits under various schemes since 2016. It is recognised as the preferred carbon calculator in many of the emerging government programmes.

With a mission to increase efficiency and business viability of food production, the scientists, consultants, and developers who work on Agrecalc, strive to constantly upgrade the calculator according to the most up-to-date available research results and recommendations.

Media contact: Aleksandra Stevanovic, Head of Marketing; ([email protected]; 07551 263 407)

Cool Farm Alliance is a science-led, not-for-profit membership organisation (community interest company) that owns, manages, and improves the Cool Farm Tool and cultivates the leadership network to advance regenerative agriculture at scale.

For over fifteen years, the Cool Farm Alliance has worked to put knowledge in the hands of farmers and empower the full supply chain to understand and support agro-ecological restoration by providing a respected, standardised calculation engine to measure and report on agriculture’s impact on the environment. The Cool Farm Tool has established widely endorsed, science-based metrics for water, climate, and biodiversity, supported in 17 languages and used in more than 150 countries around the world.

Cool Farm Alliance members share the need for a respected, consistent, standardised, independent calculation engine and have joined the Alliance to ensure the Cool Farm Tool meets this need, now and in the future.  To find out more visit https://coolfarm.org/

Media contact: Kandia Appadoo ([email protected])

Green Claims Relating to Carbon

Written by Grace Wardell/Calculator Development Officer

Due to an increasing awareness of climate change, more people than ever are interested in the environmental impact of the products they’re buying. But how many of the claims around carbon are true and how can we trust them? The UK Green Claims Code suggests that 40% of green claims made online could be misleading1. As a farm business, it is particularly important to ensure that claims made around carbon or greenhouse gas (GHG) reductions and removals are truthful and transparent. Whether you’re being offered ‘low carbon’ fertilisers or want to promote your GHG reductions, navigating green claims can be tricky. 

We know this can feel scary, no one wants to be accused of greenwashing. If you’re looking to make positive environmental claims about your farm, we would advise keeping a record of your working with evidence to back it up. We’ve laid out some key terminology to help get you started with carbon accounting, how you can market it and how you can evaluate the green claims of products you buy.

What are green claims? 

Green claims (also sometimes called ‘environmental claims’ or ‘eco-friendly claims’) are often made by a product or business that claims a benefit to, or a reduced impact on the environment.

Some examples of green claims include: 

  • “This product will reduce the carbon footprint of your farm”
  • “Company’s environmental footprint reduced by 20% since 2015”
  • “CO2 emissions linked to this product halved as compared to 2020”

How can carbon footprinting help?

Carbon footprinting is the first step to making green claims about your business or a product you’re selling. In order to reliably report changes in GHG emissions, you first have to estimate them. Conducting a carbon footprint can highlight ‘hot spot’ areas in your business which might be emitting more GHGs than you thought. Addressing these ‘hot spot’ areas and reducing emissions associated with them is often an easy first win in the journey to lower emissions, net zero and even financial savings. You can try out our carbon calculator tool, which is free for farmers and growers. You will then need to record your GHG emissions estimate in subsequent years. Once you have evidence of reduced emissions over time, you may want to promote this, for example on a product you sell or as a business. Here are some key terms to get familiar with.

Key terms

Reduced emissions refers to the direct lowering of GHG emissions by adopting more sustainable agricultural practices, technologies, and management strategies. These reductions involve minimising the release of GHGs that occur during conventional farming activities. Looking at ways to reduce GHG emissions is the first recommended step before you seek to make any “green claims”.

Example: A farmer adopts precision agriculture techniques to apply fertilisers more efficiently (e.g., using soil sensors, variable rate application, or slow-release fertilisers).

Impact: By optimising fertiliser use, the farm reduces the amount of nitrous oxide (N₂O) emissions, which are released when excess nitrogen is applied to the soil. Improving nitrogen use efficiency can directly reduce N2O emissions.

Avoided emissions refer to GHG emissions that would have been released into the atmosphere under business-as-usual practices but are prevented through changes in farming methods, land use, or supply chain activities. These emissions reductions do not remove carbon from the atmosphere directly, but rather prevent emissions from occurring in the first place. It’s very similar to “reduced emissions” but it is more hypothetical.

Example: A distributor uses biofuel from used cooking oil to transport their products (renewable energy source) instead of using diesel.

Impact: High emissions that would have been released from burning diesel or during transport are avoided. This distributor may have lower GHG emissions from transporting the same quantity of goods the same distance as compared to a distributor using diesel. However they may require more biofuel to transport the same quantity of goods the same distance so the avoidance of emissions is not guaranteed.

Carbon Removals is the process of actively removing CO2 from the atmosphere and storing it for a long time, using either technology or nature-based solutions. In a farming context, this is mostly done by natural sequestration of carbon into soils, trees and other biomass. These removals can help offset GHG emissions, making them a critical component of climate change mitigation efforts in agriculture.

Example: A farm establishes hedgerows along field boundaries, which serve as natural windbreaks and biodiversity corridors.

Carbon Removal Mechanism: Hedgerows sequester carbon in plant biomass and enhance soil carbon storage along the boundaries of agricultural fields.

Impact: In addition to carbon removal, hedgerows provide habitat for wildlife, improve soil health, and protect crops from wind and erosion.

Carbon insetting refers to reducing GHG emissions – or increasing carbon storage – within a company’s own supply chain, focusing on sustainability improvements that benefit the company’s own production processes and stakeholders. Whereas carbon offsetting involves reducing GHG emissions – or increasing carbon storage – outside of the companies supply chain, often by purchasing carbon credits from environmental projects, such as tree planting. With carbon offsetting, the reduced emissions, or enhanced carbon storage, occurs elsewhere and is therefore harder to track. Read our detailed explanation of carbon insetting and offsetting on our getting paid for carbon page.  

When entering into any carbon insetting or offsetting agreement, try to ensure there is a clear definition of the project, who is responsible for claiming the GHG reductions and where those reductions are taking place. These principles can ensure there is clear evidence of where GHG reductions are coming from and can help prevent the double counting of emissions reductions.

Assessing green claims on products you buy

You might have come across “Low Carbon” products, one example of this is low carbon fertilisers. Traditional nitrogen-based fertilisers (e.g., ammonia, urea) are energy-intensive to produce, mainly due to the reliance on fossil fuels for the Haber-Bosch process, which converts nitrogen from the air into ammonia. Improvements in technology have now produced Green ammonia, manufactured using renewable energy (solar, wind, hydropower) to generate hydrogen through water electrolysis, instead of using fossil fuels. This significantly reduces the carbon emissions from fertiliser production. Alternatively, Blue ammonia is ammonia still being produced using fossil fuels, but incorporates carbon capture and storage methods to remove CO2 produced during the process. Blue ammonia still relies on the heavy use of fossil fuels, whereas green ammonia reduces this demand. 

Urease inhibitors are an example of a GHG mitigation product that can reduce ammonia emissions associated with urea fertilisers. Urease enzymes are naturally present in soil and are involved in the process of changing urea into ammonia and carbon dioxide. This means that when urea is applied to soils, a significant loss of nitrogen occurs as ammonia is released into the atmosphere, resulting in air pollution. Urease inhibitors are added to urea-based fertilisers (sometimes known as protected urea) to slow down the enzymatic process, keeping more nitrogen in the form of plant-available ammonium for longer and increasing the fertiliser efficiency. New rules in England (2024) have outlined when unprotected/uninhibited urea can be applied, check out this AHDB article to see how it may affect you.

Another example of a GHG Mitigation product are methane inhibitors for ruminant animals. Methane inhibitors are feed additives designed to reduce methane emissions produced during digestion, specifically in the process known as enteric fermentation. The goal is to prevent or slow down the final step in the fermentation process where methane is produced without harming the animal’s digestion or productivity. A methane inhibitor feed additive (Bovaer by DSM-Firmenich) has been approved for use in the UK that on average claims a 30% reduction in methane emissions for dairy cattle and 45% reduction for beef cattle2. It is worth noting that the efficacy of these products can vary across different feeding systems and therefore may not always be a ‘silver bullet’ to reducing methane emissions. 

Provenance

“Farm washing” by big UK supermarkets often leads people to believe that they’re buying products grown on small family farms within the UK, however a lot of this produce originates overseas or from big industrial scale farms.

Riverfords recent ‘Farmers against Farmwashing’ Campaign showed that 74% of shoppers want supermarkets to be transparent about produce and meat that is not British and sourced from abroad. When shoppers were shown a photo of produce in a UK supermarket under a Union Jack flag, 68% of people expected more than half of it to come from a British farm, when in fact, none of it did. 

Supermarkets have been called out before for marketing these fake farm brands that sell imported produce under a fictitious farm name and even a Union Jack flag. As a consumer, you can always check the fine print on produce packaging to see where it originates and don’t just rely on branding.

Case Study: I’ve got a Life Cycle Assessment for a product I buy in, can I use it in my carbon footprint?

For inputs on your farm, you may be buying products that come with their own associated carbon footprint and want to know if you can incorporate this into your business’s carbon footprint. Let’s work through an example.

The feed you buy your dairy cows has a life cycle assessment (LCA) carbon footprint that has been passed onto you by the company selling this product. 

  • Always check that the product LCA you have is for exactly the item you have purchased. The functional unit in this example would most likely be for 1 kg feed wheat and not a derivative of that, for example 1kg of white flour. Different products will have different processes involved that generate emissions, we can’t always assume that just because the products are similar, they will have a similar carbon footprint.

Check the methodology of the LCA to understand how it has been generated and what the uncertainties around it are.

For example, the feed wheat claims that it has a negative emissions factor (-1.2 kgCO2e/ kg wheat), i.e. the production of it has sequestered more carbon than it has generated. The LCA claims that this is due to using regenerative practices to grow the wheat which has enhanced soil carbon stocks. However, when you look at the methodology, it lists that carbon sequestration was not measured by direct soil measurements, but was instead modelled with Intergovernmental Panel on Climate Changes (IPCC) methodology Tier 1 approaches (see Box 1). 

  • If the product you are buying claims to have a negative emissions value, then the methodology needs to be based on direct soil carbon or GHG measurements on that farm. If a direct measurement of sequestered carbon can be provided, this increases the reliability of the claim and can be passed on to a company which could include it as part of its scope 3 emissions inventory. 
  • The choice of methodology will impact the reliability of the results. For example, there are three IPCC tiers to the recommended approaches (see Box 1). If direct soil measurements are taken, this would be a tier 3 approach and is the most reliable method, however the methodology uses a tier 1 (global) approach with estimated carbon stocks. 

Check how the carbon footprint is reported.

  • Ensure the carbon emissions are reported separately to any carbon removals the company claims – not just the carbon balance (i.e. emissions – removals). There is a requirement by carbon reporting guidance to separate these two values. It is mandatory to report emissions, but not removals, due to the uncertainty around them. 
  • Check the units that it is reported in (usually kg CO2e / kg product) and ensure that this makes sense for the way you will use the product. 
  • Has the footprint been validated externally by third party verification? Although this is not absolutely necessary to have a reliable product footprint, it can help add confidence that the methodology has been checked by others. 

If you are satisfied that the LCA has supplied a clear methodology on how the carbon footprint has been calculated, you may wish to include it as part of your scope 3 emissions report. 

Box 1. IPCC Methodologies for Calculating GHG Emissions

Tier 1: This is the most basic approach, using default emission factors and generalised activity data provided by the IPCC for different sectors. It mostly uses global data and is intended for broad estimates with low accuracy.

Tier 2: This approach uses country- or region-specific emission factors and more detailed activity data, such as local energy usage. It improves accuracy compared to Tier 1 by incorporating factors that are more relevant to the specific conditions of the region.

Tier 3: The most advanced method, using detailed modelling or direct measurements and highly specific data for the particular circumstances of the country or sector. Tier 3 provides the highest level of accuracy by incorporating real-time data, complex models, and system-specific emission factors.

Each tier increases in complexity, accuracy, and the level of data required.

Pointers on how to sense check and provide robust environmental claims

The competition and markets authority has set out six principles for businesses to follow when making green claims and provided examples to help you assess green claims3. Here we have summarised the principles with examples:

  1. Is the claim truthful and accurate?
    • Check the facts: Verify that the environmental benefit being claimed is backed by credible evidence. Look for data, scientific studies, or certifications that support the claim.
    • Avoid exaggeration: Ensure that the claim reflects the actual impact of the product or service and is not overstating the environmental benefits.
  1. Is the claim clear and unambiguous?
    • Does it go beyond using generic phrases like ‘green’ and ‘eco-friendly’ and list the specifics of how it is an improved product? 
  1. Does the claim omit or hide important relevant information?
    • This may be hard to know and would probably involve doing a little bit of research around the product and its production methods. 
    • For example, a product with ‘save our seas – these are microbead free’ makes you believe that similar products may contain microbeads – however microbeads are banned in the UK, and therefore shouldn’t be in any of the products!
  1. Does the claim make fair and meaningful comparisons?
    • If a product is claiming to be better than others on the market, how has this been assessed? Has the comparison included a wide range of alternative products?
  1. Does the claim consider the full life cycle of the product or service?
    • Life cycle assessments show the overall impact of a product from cradle to grave.
  1. Is the claim substantiated?
    • An example of a substantiated claim might be: “Our product packaging is made from 100% recycled materials and is fully recyclable. By using recycled materials, we have reduced our packaging-related carbon footprint by 40% compared to virgin plastic packaging. This reduction has been verified through a third-party Life Cycle Assessment (LCA) in compliance with ISO 14040 standards.”

References 

  1. UK Government. The Green Claims Code. Available at: https://greenclaims.campaign.gov.uk/. Accessed [07/11/2024].
  2. DSM-Firmenich (2024). Bovaer. Available at: https://www.dsm.com/anh/products-and-services/products/methane-inhibitors/bovaer.html. Accessed [07/11/2024]
  3. UK Government, Competitions and Market Authority. Making Environmental Claims on Goods and Services. Available at: https://www.gov.uk/government/publications/green-claims-code-making-environmental-claims/environmental-claims-on-goods-and-service Accessed [07/11/2024]

Case Study: Ben Richards, Middle Trelan Farm, Cornwall

Ben Richards
Video courtesy of Innovation for Agriculture

Ben Richards has been awarded Third Place in the 2024 Soil Farmer of the Year competition. This case study gives an overview of how Ben has built his system around resilient soils to provide the forage and nutrition his herd. If you would like to visit Ben’s farm, a farm walk taking place on 12 September 2024: click here to book your place.

Middle Trelan Farm is a 290-acre dairy farm in Cornwall, milking 180 to 200 cows, depending on the time of year. The farm has been certified organic since 2020, with the cows being 100% grass-fed, milked once a day, calved in spring from the 10th March and outwintered to reduce costs. 

Soil management has been a key focus on the farm for over 20 years, and Ben shares that making more money has consistently been a key driver in the steps taken to improve soil health and reduce inputs. 

Ben Richards

Early noughties – addressing nutrient imbalances and surface compaction  

As a wet farm with heavy clay soil, an early challenge in soil management was to alleviate surface compaction, which was achieved using slit aeration. 

Ben also took advice from Straight Line Nutrition, using recommended fertilisers to resolve nutrient imbalances in the soil. 

2010s – phasing out chemicals and introducing herbal leys  

Weaning off chemicals has been a gradual process at Middle Trelan Farm. In 2012, the decision was made to start gradually weaning off the high use of nitrogen fertiliser. Now, Ben focuses entirely on feeding the soil, not the plants, which he does by applying 2.5 tonnes/acre composted farmyard manure per year.  

Having switched from blanket spraying to spot spraying broadleaf weeds in 2005, spraying was stopped altogether in 2016. It took four to five years to increase dock beetle numbers to the point where they were controlling docks. Now, with the overall reduction in chemical use, the docks have become more palatable, so what the dock beetles do not eat the cows will eat anyway. 

Ben also started growing herbal leys in 2016, selecting species to benefit the soil, as well as those which will benefit the cows. This includes choosing deep-rooting species to improve the soil structure and enable water to permeate into the soil. Seed companies warned that cows would not eat some of the plants, such as sweet yellow blossom clover, but in practice, Ben has found that as the soil has improved and plants become more palatable as a result, the cows will eat all species. He has not included any ryegrass in the mix for over five years, with the exception of during Covid when the seed companies were not able to source an alternative. 

For reseeding herbal leys, cows are now grazed on the area to be reseeded over winter, followed by pigs. The pigs turn over the soil and root around, preparing the ground for establishing a herbal ley in the spring.      

The cows have benefitted from the move away from chemicals and the introduction of herbal leys, as they can self-medicate by selecting the nutrition they need. The evidence for this is clear, as Ben has not needed to treat the cows with any medications for eight years, although he does still give the calves an anthelmintic for lungworm. 

The phasing out of chemical inputs, from broadleaf herbicides to veterinary medicines has reduced costs and therefore improved farm profitability. 

2020s – moving from a bacterial soil to a fungal soil 

Ben shares that it was 2021 to 2022 when the farm turned around – it had reached the point where it had a fully functioning bacterial soil. The focus has now shifted to move to a fungal-dominated soil, as with fungal mycorrhizal structures present plants can cooperate, warning each other of dangers and contributing to the overall health of the farm ecosystem. 

The presence of deep-rooting plants will facilitate the transition to a fungal soil, so Ben has embarked on an agroforestry project, which is funded by Forest for Cornwall. The project began in 2023 to 2024, when 6,500 trees were planted in 1.5m rows (3 trees across 1.5m), with 12m between rows, which should be close enough for the fungal mycorrhizal structures to reach each other. Grazing trees were selected, including different varieties of willow, poplar and aspen. 

The wettest fields were chosen for tree planting, with the intention that the trees will also help drain the fields, getting rid of surface water. Herbal leys have been planted between the tree rows, so in year two the trees will be grazed together with the herbal leys. 

Another 4,000 trees will be planted this winter. In year three, Ben intends to stop planting and wait to see the impact during a full grazing season, then if it is working as expected he can take cuttings from the existing trees and roll out the system across the whole farm.    

Ben explains that the overall goal of the agroforestry is to maximise dry matter production on-farm to feed the cows, while the trees will also help drain the fields, promote fungal activity in the soil, secure a reliable forage supply throughout the summer and also provide nutritional benefits to the cows eating them. In short, the trees should ‘tick all the boxes’ for farm resilience now and in the future. 

To conclude, Ben shares that he has found it to be true that ‘less is more’. The less interfering he has to do with the cows, the better their life is, and the better his is too.    

Groundswell reflections: how close can agriculture get to being carbon positive?

Groundswell

by Liz Bowles, CEO

Groundswell this year was as exciting as ever, with so many excellent sessions and people to catch up with and meet for the first time. 

There was much interest in how farmers and growers can benefit from the new markets for carbon, biodiversity net gain and nutrient neutrality to name but three, but to my mind, there was far less attention on how the sector can actually reduce the emissions associated with producing food itself.

For me, this is critical as we have to find a way to reduce the greenhouse gases we push into our atmosphere, as well as removing some of the historical emissions already there, if we are to reduce the worst impacts of climate change.

There is, however, a central question for our food system which is: What level of emissions are inevitable from the production of food which is essential for humanity? The Climate Change Committee has come up with a view on this in their 2020 UK agricultural policy for net zero report, which suggests a road map for saving 64% in the annual emissions from agriculture compared to 2017 levels when UK agriculture was responsible for around 58 MtCO2e (12% of total UK  emissions). On closer inspection of the figures though, the actual savings in emissions from agriculture are set at around 21 MtCO2e / year, with the remaining savings to come from forestry, changes to our diet and the production of energy crops instead of food.

This is set out below:

The specific actions suggested for each of these areas are set out below:

  • Tree planting on 30,000 hectares per year
  • Use 10% of UK farmland  for agroforestry (no distinction made between agroforestry and hedgerows)
  • Restore at least 55% of peatland area by 2050. (For lowland peat lands this means rewetting or paludiculture to reduce emissions and for uplands this means rewetting).
  • Increases in low-carbon farming practices for soils and livestock (no detail provided)
  • Increase the area of farmland devoted to energy crops to 23,000 ha per year

From this list, the low carbon farming practices interest me in terms of how their adoption will enable an annual reduction of 10MtCO2e per year to occur (~25% of 2022 UK agricultural emissions). At Farm Carbon Toolkit we work directly with farmers and growers to adopt these practices and changes to current management processes. Typically the areas to focus on include:

  • Planting cover crops
  • Changing crop rotation
  • Transitioning to no/min till where possible
  • Growing new crops
  • Integrated pest management
  • Adopting rotational grazing
  • Planting herbal leys

Across all these practices, there should be a focus on reducing the use of artificial nitrogen fertilisers and purchased livestock feed (especially those including imported ingredients) as both these inputs carry a high level of associated emissions.

Many of these practices can also be considered to be part of the suite of “regenerative farming principles”. Adoption of more regenerative farming practices is growing steadily, but for many farmers, the key question surrounds the financial viability of their adoption when margins are so tight. A recent report commissioned by the Farming for Carbon and Nature Group and funded by the Natural England Environment Investment Readiness Fund (NEIRF) sets out the financial and climate impact of adoption of more regenerative farming practices and systems and includes partial budget information on the financial impact of adoption in England with support from SFI where relevant.

Regenerative farming practices and their financial viability, including external support available in England, where available

This chart clearly shows that with the inclusion of SFI support, many of the practices generally considered to be regenerative are likely to deliver a similar margin than more conventional practices in these areas. The area where more support is needed is in the adoption of more complex arable rotations including pulses and fertility building leys, where even with appropriate SFI payments, the margins from shorter more degenerative rotations are likely to be more profitable. We are a member of the Nitrogen Climate Smart Consortium which is supporting the increased production of pulses and legumes in the UK together with their use as animal feeds to address the need to reduce the use of artificial fertilisers and imported animal feedstuffs. This project will support farmers to do this through farmer field trials as well as the introduction of new technology for on-farm pulses processing.  You can find out more about this project and get involved by following this link.

In summary, I am fairly confident that UK agriculture can reduce greenhouse gas emissions by at least 10% through the adoption of low-carbon farming practices. Indeed through some of the practical work with farmers in which FCT is involved, we are seeing higher levels of emission reductions being achieved within businesses with little or no change in farm output and in many cases increased profitability and business resilience. The element which is mostly missing is the confidence and knowledge to make the necessary changes and knowing where to start.

At FCT we provide a (free for farmers and growers) Farm Carbon Calculator to allow businesses to understand their starting point, a set of tools within our Toolkit to assist businesses to make those chances and a team of expert advisors to talk to.

You can always make contact with us by email [email protected] or by calling us on 07541 453413. We look forward to hearing from you.

Can Milk be Green?

Reflections from Groundswell Dairy Session 2024

Written by Becky Willson

Groundswell 2024 Dairy Session – a great turnout!

Dairy is often in the spotlight in terms of its environmental impact. Whether it be focussed on slurry management, methane emissions from animals, or soil loss and run off from maize crops, dairy is often an easy target. However, there are numerous farmers and projects who are showcasing that this doesn’t need to be the case, and there are positive steps that can be taken. 

When approaching Groundswell this year, it was one of the things that we wanted to highlight. We are very lucky to work with some really forward-thinking organisations and farmers that we wanted to highlight at this national event. So we submitted our session “Can Milk be green?” to try and understand some key questions. 

These were:

  • How do we quantify the importance of regenerative dairy systems when the current metrics are solely focused on reducing emissions intensity/litre?​
  • How do we accurately represent the contribution that regenerative dairy systems are providing to carbon sequestration, biodiversity and resilient landscapes?​
  • How do we do this in a cost-effective way which provides reassurance to processors and consumers that milk can be green? ​
  • How do we support farmers in that transition?​

We had a fantastic panel of speakers which included farmers who were making changes and processors who were supporting both data collection, evidence building and industry communication. 

Tom White from Yeo Valley introduced the session and highlighted the ability for grass-based dairy systems to deliver on a wide range of environmental benefits. The key areas of importance were around how we gather good data, collaborate and support our farmers to be able to deliver the changes on-farm. Tom focussed on the importance of diversity, including diversity in our pastures, rotations and management systems to deliver on a range of environmental impacts. 

Andrew Brewer from Ennis Barton farm in Cornwall provided some insights into the trials that he has been involved with on his farm as part of the Farm Net Zero project. Trialling herbal leys and their impact on cow health and rumination, soil recovery after potatoes and cover crops have all provided useful tools to build soil heath and reduce emissions.

Will Mayor from Yeo Valley farms spoke about how by using their experiences with the beef animals they have adapted a system that works for their dairy cows. Implementing next-level grazing has allowed them to increase covers, remove the topper from the system and maintain milk quality and pasture utilisation, alongside soil health and carbon sequestration.

Lucy Noad from Woodhouse Farms shared her story in terms of her transition from a more conventional dairy farm over the last few years. Lucy spoke about the need to support farmers in the transition and also to ensure that the way we communicate engages farmers to understand the relevance of practical solutions for them. 

Mark Brooking from First Milk concluded the session highlighting some of the ways that First Milk are supporting their farmers to make the transition to more regenerative practices. Farmers are supported through incentives to implement rotational grazing, species diversity and minimal cultivation in order to demonstrate an uplift in soil health, sequestration, biodiversity and water quality. Data is being collected on the impact of these changes to provide confidence in the potential for their members to deliver solutions.

It was an inspiring session which provided real life examples that show the positive steps that are taking place to provide data, collaborate and support farmers. Although our soil project with Yeo Valley is in the interim years before we retest soils, it was great to hear some of the practices taking place and the production and resilience benefits that the farmers are seeing now irrespective of soil carbon sequestration.

So can milk be green? The answer was a resounding yes!

To watch the full session please visit the Groundswell YouTube channel.

What are Dung Beetles?

Dung beetles are fascinating creatures that play an essential role in breaking down dung, reducing greenhouse gas emissions and providing vital ecosystem services such as improving pastures, conditioning soils, and reducing parasitic burdens on our livestock. 

What are the types of dung beetle?

There are three basic groups of dung beetles: dwellers, tunnellers, and rollers. Dwellers live and reproduce within the dung, tunnellers create channels underneath the dung pat pulling dung through the soil and storing within the tunnels to eat and lay their eggs, rollers roll dung balls away and bury them underground.

Where can you find dung beetles?

Dung beetles are found on every continent except Antarctica. Their habitats range from desert to farmland to forest, owing their entire existence to dung from an equally wide range of animals. You’ll find most dung beetles in or around dung pats from herbivores that typically pass undigested plant material as well as liquid. Adult dung beetles tend to feed on the more liquid portion of the dung pat and dung beetle larvae will feed on the more solid portion. Hence, it’s important for the animals depositing dung to have a diet containing lots of fibre.

Dung beetles in the UK

There are around 60 species of dung beetle in the UK belonging to the tunneller and dweller groups – rollers are found in the warmer climate of the southern hemisphere. Some dung beetles are active during the day whereas some fly at night. Just like humans, dung beetles have preference when it comes to sniffing out food (dung). Some prefer dung from specific animals, some prefer dried dung as opposed to fresh and some are even picky when it comes to the location of dung within a field, however, mostly are generalists and will reside in any they can find.

What are the benefits of dung beetles?

It has been suggested that dung beetles can save the cattle industry around £367 million a year.

How?

Firstly, they increase soil nutrients. Fresh dung contains nitrogen, potassium and phosphorous; dung beetles eat, bury, and release these nutrients for the benefit of the surrounding soil biology, improving soil fertility and soil structure through channelling and drawing down organic matter. This can reduce reliance on fertiliser and makes much better use of our manures.

Secondly, dung beetles reduce pasture fouling. When dung isn’t removed from the field, the grass underneath it will die and the grass surrounding it will be unpalatable to livestock. If you scale this up, it removes a huge area for grazing as well as wasting an abundance of nutrients.

Thirdly, dung beetles are excellent at reducing pest flies from the activities of mites which are transported on the beetles’ bodies. The value of these organisms can be identified through reduced parasites on your livestock that ultimately impact milk yield and liveweight gains due to energy expended by the livestock to defend themselves or fight against infection. In both cases, dung beetles reduce survival of flies and parasites through competition of resources. 

Why are dung beetle populations in decline?

Unfortunately, despite the benefits of dung beetles, they are in decline due to the intensification of livestock systems – use of pesticides and anthelmintics. During the grazing season, dung pats could be broken down in a matter of days but instead, many lie rotting for a long time (and producing more methane emissions).

How can we encourage dung beetle populations?

Provision of dung is vital. If we’re able to outwinter even a fraction of our stock it provides a food resource all year round, attracting a more diverse array of dung beetle species.

Feeding livestock a more fibrous diet i.e. moving away from a grain-based diet can also help as it’s important to provide that partially undigested fibrous material.

Finally, long-acting anthelmintics can cause catastrophic loss of dung beetle populations. With veterinary support, frequent weighing of livestock and spot-treating animals  offers a more sustainable way of reducing anthelmintic use, reducing the wormer-resistance in intestinal parasites, and protecting dung beetle populations. 

How can we find out more about dung beetles?

There’s a wealth of information online about dung beetles, but to really get down to the detail, Farm Carbon Toolkit  is holding a two-day conference, in partnership with leading vets, dairy cooperative First Milk and Somerset dairy company Yeo Valley, on Tuesday 11 and Wednesday 12 June at Yeo Valley’s Holt Farm near Blagdon, south of Bristol. Event details and registration can be found here

Adapting to a changing climate for farming

Wellies in a puddle

As this blog goes live, we have experienced an extraordinary weather year across the UK, and the impact on farming and growing has been profound. February and March saw record rainfall across most of the country, followed by some drier spells and then continued rain in places. The net result has been one of the most challenging springs for years, which is such a crucial time in the UK farming calendar. Late spring and early summer has been very variable, according to which part of the country you are.

Rewind to summer 2023 and June was considered to be the hottest June ever in UK weather records, followed by another hot spell in September. Yet in between, July and August were unsettled, with two major storms.  Mild, stormy and wet spells were the continuing theme for the latter part of the year.

Everyone in farming and growing understands the critical effect that weather plays in the annual cycle of producing food, managing land, and the financial health of farm businesses. It is clear that  weather patterns and the climate are becoming more unpredictable, creating significant impacts for farms, land and food. How do farmers and growers plan for the future with climate extremes becoming the norm?

The outlook

Met Office predictions for the trends in UK weather patterns over the next 30 years or so will include:

  • Warmer and wetter winters
  • Hotter and drier summers
  • More frequent and intense weather extremes

This is happening now, but the knock on impacts are sometimes harder to predict, for example:

  • Unpredictable weather patterns make all sorts of farming operations – from silage cutting, potato planting, arable drilling to crop harvest far more difficult to plan
  • Significant variations in crop and animal health due to stress factors
  • Uncertainty in business planning and financial returns
  • Cumulative impacts that compound to present challenges – such as shorter windows to plant, changing pest and disease pressures, international market changes, etc.

In short there are many climatic challenges facing farmers, growers and the wider food sector, and many of them are simply not known yet. We’re all learning in this process and no one has all the answers. Climate adaptation is every bit as important as climate mitigation in the farming world, and sometimes the answers for both mitigation and adaptation can be the same. Weatherproofing your farm should be a priority for all farmers and growers.

Short to medium term solutions

So what can you as a farmer or grower do about it? There are things out of our control – the location of our farms (well, unless you’re up for moving!) and the weather systems we receive, but there are plenty of things that can be done to adapt. We’ll look at our top five actions

  1. Soil health
  2. Water management
  3. Diversity in the business  
  4. Knowledge of the trends
  5. Investment in the future

Soil underpins everything we do in farming, and a healthy soil can be incredibly resilient in terms of water management, soil health and structure. Increasing organic matter content, enhancing soil biology and minimising cultivation and compaction can have massive benefits.

Water is crucial for all plant growth, but having too much or too little can massively affect all crops, from grass to cereals and vegetables. A soil with good structure and good organic matter levels can help buffer against both flood and drought conditions. However, having plenty of available water for irrigation when needed can be essential for crops like vegetables and fruit. Most farms can improve their water storage capacity, harvest more rain water and implement efficient irrigation systems.

Diversity of enterprises on the farm will help guard against the danger of having all your eggs in one basket. Inevitably some crops or products do better than others in different years. This might mean a range of crop types, genetic diversity within a particular crop, or branching out to try different breeds of plants and livestock. A biodiverse farm can also help regulate extreme weather events, even changing the micro climate of a farm.

Knowledge of the farmer or grower is one of the most powerful tools. Understanding what a changing climate might look like for the farm, and planning ahead is vital to build resilience and guard against risks from extreme weather.

Investment in the future could be the key to business resilience. For example, identifying that the farming system would benefit from more trees, water storage, different cultivation equipment, livestock sheds, etc. This forward planning and investment should be strongly considered if and when finances allow. Grants are also available, such as those offered by Defra.

Longer term solutions

At Farm Carbon Toolkit (FCT) we work with businesses every day to create Carbon Action Plans, where we recommend short, medium and long term solutions; Climate Adaptation Plans should be seen in a similar way. Having said that, making a long term plan to cut carbon is much easier in its aim – to cut net carbon emissions to zero or beyond. But with climate adaptation plans – what is the aim?

That question is hard to answer as the climate of the future is uncertain. But what do we know is true? Well, the climate we’re used to is changing , as are weather patterns. Predictions are currently largely coming to pass, and so that gives us some guidance. Bearing in mind they are just predictions, one thing is certain – farms need to be resilient, adaptable and well prepared. It is likely the future will not look much like the past.

Change can be very challenging, especially in businesses like farming which are inherently long term. Embracing change can be difficult for many reasons – resources, money, land capability, mindset, tradition and much more. But burying our heads in the sand is also not viable – this is difficult, but it is happening!

Here are some areas to consider:

  • Cultivated soils are particularly vulnerable to soil erosion, drought and flooding. Moving towards reduced cultivation and better soil that is permanently covered will build resilience
  • Adapting land use to be more resilient to intense rainfall events
  • Livestock can be very vulnerable to heat and extreme weather. Providing shade and shelter can help reduce the impacts on animals
  • Animal feed supply can be impacted significantly by weather, in terms of price, availability and quality. Are there ways to boost feed self-sufficiency and feedstock resilience for the farm?
  • Perennial crops tend to be more resilient than annual crops. Opportunities might exist to shift cropping systems to build resilience
  • Diversity of farm outputs may help to reduce the number of “eggs in one basket” and spread climate-related risks
  • Microclimates can help farms to adapt. Trees, hedges and agroforestry can help to provide shade, manage water, and shelter from storms, as well as offering alternative income streams
  • Water storage can improve in quantity and ability to deliver water to crops, in combination with soils that have improved water holding capacity.
  • Varieties and breeds that are adapted to your local soils and climate may do better than others, for example population wheat. Local seed breeding is a skill that has largely been lost to most farmers and growers.

Whatever future path is chosen by farmers looking to adapt to a changing climate, two themes are clear. Firstly, that no one solution will work and a pathway should be holistic. Secondly, those plans should be adaptable and may well have to change. The future is uncertain, but a resilient business that has planned ahead has a better chance in weathering future storms. FCT can help you in that planning.

Helping you

An increased focus for us at Farm Carbon Toolkit will be to help you with services,  tools, techniques and insights to adapt to a changing climate. We have over 15 years experience in helping farmers and growers to measure, understand and reduce their carbon footprint. We have a range of services, and a team of experts who really understand farming. Increasingly we will be doing more to help you both reduce your carbon footprint, and adapt to a changing climate.

Financial and climate impact of regenerative farming practices

Recently, we completed a piece of work with SOS-UK that presented the financial and climate impacts of different regenerative farming practices, based on the best available evidence we could gather that relates to the UK. The full report is available here and over a series of three articles, we’ve outlined the need for more of this work, the current evidence on the impacts of regenerative farming practices – and in this final article – we share our overall conclusions from this work.

What did we find out?

Overall, from the financial partial budgeting we carried out, we found a potential for margins to be maintained if not improved, from the adoption of some of the regenerative farming practices we looked at. Mainly though, only if SFI payments are included where they could be available.

Table 1: Regenerative farming practices and their financial viability, including external support where available
Table 1: Regenerative farming practices and their financial viability, including external support where available (organic maintenance payments not included). Source: Farm Carbon Toolkit (2024), Understanding the financial and climate impacts of regenerative farming practices. Report available here.

Typically, the adoption of more regenerative farming practices can result in lower yields, lower livestock stocking rates and lower output (without external support), especially where land is turned over to fertility building leys and reliance on artificial fertilisers is removed. Many studies in recent years have evidenced this, including the National Food Strategy. The extent of the challenge is unclear and from our assessment of the research; the current evidence base for any estimate on this is poor.

However, reducing input use can reduce business risk (vulnerability to input costs changes reduced with lower use). As more farmers learn how to implement more regenerative farming practices effectively the risk of reduced output will drop.

Confirming what is often cited anecdotally, there is also evidence that a transition period is required to allow soil and ecosystem health to improve so that it can function effectively with reduced or no chemical inputs. Depending upon the starting point, this can be up to five years, which highlights the need for support to bridge the financial gap, alongside other support for farmers as they acquire a new range of skills and knowledge. In England, the introduction of the Environmental Land Management Scheme provides financial support for the introduction of some key regenerative farming practices, such as growing cover crops and herbal leys. However, for more holistic changes to farming systems, such as moving to longer and more complex rotations including grass leys, it is less evident that the current financial support will facilitate this transition unless the farm has a profitable use for the grass and the individual crop gross margins are not compromised significantly.

There is also a cultural and social aspect to the acceptability of a transition to more regenerative farming systems which should not be underestimated. For instance, a more regenerative farm is often considered to be less “tidy”. Acceptability is increasing, especially where farmer networks exist to reinforce decision-making in favour of more regenerative farming practices. 

Practices which reduce greenhouse gas emissions

In the previous article, we introduced some of the broad sustainability impacts of different regenerative farming practices. Specifically on greenhouse gas emissions, many of the recommended ways to reduce farm greenhouse gas emissions are part of the suite of more regenerative farming practices, e.g.

  • Reducing the use of cultivations
  • Reducing reliance on artificial fertiliser (which can only be achieved when other more regenerative farming practices are in place which support enhanced soil health and fertility)
  • Changing feed sources for livestock away from reliance on imported protein sources such as soya- this is easier for ruminants than for young monogastrics
  • Maximising use of forage for livestock feeding

Adopting these practices generally reduces the emissions per hectare, due to various factors such as reduced synthetic fertiliser and fuel use, improved soil health and more efficient use of resources. However, lower yields and lower livestock stocking rates are a trade-off and this will ultimately impact the carbon footprint of the end product unless any associated increases in soil carbon removal are factored in. 

Typical, more regenerative farming practices include replacing fertiliser with legumes within cropping rotations and grassland; reducing cultivations for crop establishment; growing herbal leys; challenging received wisdom on the level of artificial fertilisers required by crops1 and the requirement for the use of insecticides. For livestock farmers, typical regenerative farming practices being adopted include reducing the use of supplementary feeds and keeping livestock grazing longer into the autumn, alongside practices to improve soil health and structure.

Financial viability of more regenerative farming practices

In our recent work with SOS-UK, we created partial budgets for the majority of the regenerative farming practices across a range of typical farm types: dairy, arable, mixed (non-dairy livestock and arable), lowland livestock and upland livestock.

In all budgets, costs were calculated on an annual basis. Input and sale values reflect prices in 2023 and are drawn from reliable industry sources. For future years the actual impact will be affected by changing prices and costs.

Whilst we are finding out more every year about the impact of many regenerative farming practices, which is helping to fill the information void, machinery manufacturers are also coming to market with improved equipment to enable some of the machinery linked regenerative farming practices such as reduced cultivation and intercropping/ companion cropping. These innovations are both reducing the cost (in some cases) for practice implementation and also improving the effectiveness of the practice itself.

A number of key issues surfaced which have a significant bearing on the introduction of these practices:

  1. Capital investment required: This is particularly relevant where specialist machinery and/or equipment is required. For instance, adopting minimum cultivations, intercropping and holistic grazing. For reduced cultivations, the need for more specialist drills is sometimes balanced by the ability to reduce the overall machinery inventory. In addition, Defra has made a capital grant available for some innovative items of machinery and equipment through the Countryside Productivity Scheme in the past, which reduces the initial capital required to adopt these practices. Other mechanisms to support access to appropriate machinery and equipment might be through machinery rings or syndicates or through third parties such as landlords underwriting the capital costs for these investments, or use of contractors.
  2. New technical skills required: It is clear that some practitioners have acquired the necessary skills to adopt regenerative farming practices with little or no yield penalty, which increases the financial viability of their adoption. As these skills become more common the adoption of these practices should increase. However, supporting a wider understanding of the skills and techniques required will accelerate adoption alongside an inherently better understanding of their financial viability.
  3. Linkage of the value of regenerative farming practices to the price of farm resources and inputs: Many of the regenerative farming practices described in our report involved a reduction in farming intensity. However, this can be difficult to implement when the cost of the key resources required (especially land) is high. There is no easy answer for this challenge, but many farmers will cite their need to finance their ongoing business to their adoption of more intensive farming practices, although external support for more sustainable farming is bridging this gap for some practices.

With support from SFI (in England), over 50% of the practices we budgeted show a neutral or positive financial impact, which is largely due to this support. The full report includes partial budgets for each practice together with the assumptions used to arrive at the budget outcome shown. It is intended that these budgets can be adapted to fit individual farm circumstances to enable farmers and growers to better estimate the impact of adoption on their holdings.

Recommendations

Our recommendations from this work are aimed at researchers, the Government and the industry itself:

  1. More research is required to provide clearer evidence of the impact of the adoption of regenerative farming practices on yield and output as this is seen as a key barrier to adoption by many farmers
  2. Increased support for farmers to build the confidence, skills and knowledge required for effective adoption of regenerative farming practices 
  3. Institutional Landlords provide transition support to tenants undertaking a whole farm approach to the adoption of regenerative farming systems, especially where more complex and longer arable rotations are a central theme of the transition
  4. Support the development of Machinery Rings or Syndicates to facilitate access to the type of equipment required to facilitate the transition to more regenerative farming systems

Footnotes

  1. It has been estimated that £397 million of artificial fertiliser is wasted each year in the UK due to over-application. AHDB Research suggests UK farmers could potentially reduce up to 50% of the nitrogen fertilisers on specific crops without seeing a significant reduction in yield.

The Impact of Regenerative Farming Practices: What Does the Evidence Say?

In the first of this series of three articles, we discussed the need to better understand the financial and climate impacts of regenerative farming practices. In this article, we summarise our recent work with SOS-UK (report available here), to contribute to this understanding. This article focuses on the practices themselves and the state-of-the-art regarding what we know about their impacts on farms.

What practices are we talking about?

We started with a focus on the five commonly cited principles of regenerative farming practice:

  • Minimise soil disturbance
  • Keep soil covered
  • Maintain living roots in the soil as much as possible
  • Maximise plant diversity
  • Integrate livestock

Then we assembled a list of typical farming practices which can support these principles, supporting a more regenerative farming system. In practice, we are clear that where these practices are adopted together, the impact will be greater.

  • Reduced tillage 
  • Introduction of Silvopasture
  • Enhanced hedge management
  • Introduction of herbal leys 
  • Replacement of monoculture ryegrass swards with grass/ clover swards
  • Holistic grazing
  • Maximisation of forage in dairy cow diets
  • Improved use of manures and composts
  • Introduction of cover cropping
  • Introduction of longer crop rotations
  • Retention  and incorporation of  crop residues
  • Introduction of Agroforestry
  • Intercropping/ companion cropping
  • Use of living mulches
  • Winter grazing of cereals

What’s the evidence for their impacts?

We assessed a range of evidence for the sustainability and financial impacts of the farming practices described above. Of the various papers and reports we assessed, we highlight two reports in this article, which we felt were helpful in bringing together evidence on sustainability impacts. First, the recently published paper by Maskell et al. 2023, Functional Agro Biodiversity: An Evaluation of Current Approaches and Outcomes. This paper contains some of the most up-to-date analysis of the state of the art and contains two key tables which are reproduced here. The first table assesses the strength of the evidence for the impact of key practices which are considered to support enhanced Functional Agro Biodiversity (FAB). This list shows that the strongest evidence for the impact of these practices is on soil health (>60% of practices have strong evidence for impact). By contrast, less than 20% of practices have any evidence of impact on crop yield. For water quality, biodiversity and control of pests and weeds more than 50% of the practices listed have strong evidence of impact.

Table 1: Strength of evidence for the impact of practices designed to improve functional agro-biodiversity (FAB). Source: Maskell et al. 2023.
Table 1: Strength of evidence for the impact of practices designed to improve functional agro-biodiversity (FAB). Source: Maskell et al. 2023.

The second table brings together findings from a wide range of research in recent years to identify the contributions of these farming practices to ecosystem service provision and farm management. Again, what stands out is the low level of reporting of any improvements in crop yield from adopting these practices. In general, the reverse has been found more commonly. Similarly, conflicting findings on the impact of these practices on GHG emissions are present. However, there is a clear consensus for the positive impact of the vast majority of the practices listed on pollination, biodiversity, soil and water quality, alongside flood regulation. In fact, all the elements of ecosystem service provision are enhanced through the adoption of these practices.

Table 2. Selected FAB measures and their contribution to ecosystem service provision and farm management.
Table 2. Selected FAB measures and their contribution to ecosystem service provision and farm management. GHG = GHG emissions. Source: Maskell et al. 2023.
Table notes: GHG= GHG emissions, SOC= Soil Organic carbon, ↓=Decrease; ↔= no significant effect, ↑= Increase. The cells have been shaded green (positive effect on ES), red (negative effect on ES), orange (mixed). Presence of multiple arrows indicates good evidence for different effects, often depending on specific context.

As a follow-up to the likely impact of these practices on soil carbon sequestration, we carried out desk research to identify the likely range in potential for some of these practices. We reviewed a report produced in January 2022, led by the Green Alliance for the Oxford Farming Conference, which reviewed the evidence for soil carbon removals and reduction in emissions following the adoption of some  “more regenerative farming” practices and land management changes. The authors reported a relative scarcity of robust data for the impacts on soil carbon stocks arising from a shortened range of farming practices. In addition, a large range of results was found from some practices (see Table 3), which makes it difficult to assign any specific level of carbon removal or reduction in emissions without measurement.

PracticeLand efficiency
tCo2e/ha/yr
Source of dataTotal UK potential
MtCo2e/yr
Assumptions
Paludiculture19.0 – 39.0*C Evans et al, 20172.0 – 4.1*25% of lowland peat drained for agriculture becomes paludiculture to meet CCC targets
Halving drainage depths for arable on peat12.7 – 18.9*C Evans et al, 20215.3 – 7.9*Drainage depth halved on all drained lowland peat
Agroforestry4.4 – 10.0(mainly tropical data so likely a lower range in the UK)D Kim et al, 20161.8 – 4.2Adoption at 416,700 hectares, A Thomson et al, 2018
Hedgerows3.1 – 7.3S Drexler et al, 20210.5 – 1.2Adoption at 168,200 hectares, A Thomson et al, 2018
Organic matter incorporation from residues or amendments-0.9 – 2.3 depending on clay content in soilC Poeplau et al, 2015-1.1 – 2.8Mid – range rate, adoption at a third of arable area
No till system as part of conservation agriculture0.3 – 0.6S Jayarama et al, 20210.4 – 0.7Mid – range rate, adoption at a third of arable area
Table 3: On-farm measures and their carbon sequestration land use efficiency. Source: Green Alliance (2022). The opportunities of agri-carbon markets. Available online.

Agroforestry and hedgerows are the best on-farm measures for carbon sequestration but will need management of woody biomass to sustain sequestration as the trees and hedges reach maturity. While soil carbon measures have low potential per hectare, and appear to be limited in terms of the length of sequestration possible, they have perhaps the highest potential for adoption whilst also keeping land in food production. 

In the next article, we focus on what we found out: which regenerative farming practices have the most potential for reducing greenhouse gas emissions together with the financial impact of their adoption.  You can also read the previous article on this topic here.